

WMRR – Landfill and Transfer Stations

Considerations for Drainage Composites – 8th June 2021

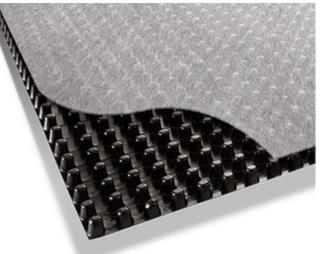
Topics

Range of materials / Drainage Cores / Geotextile Filters / Separators

Various standards / Creep Factors / Clogging Guidelines

Specification Examples

What are drainage composites



Drainage Composites

Drainage composites consist of a plastic drainage core and a filter/separator on one or both sides making the composite. There key function is transport.

4 key examples are Geonet Cuspate Extruded monofilament Tubular Pipes

Drainage Composites

Drainage composites consist of a plastic drainage core and a filter/separator on one or both sides making the composite. There key function is transport

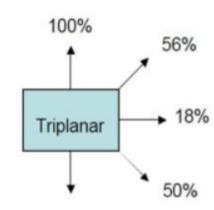
4 key examples are Geonet Cuspate Extruded monofilament Tubular Pipes

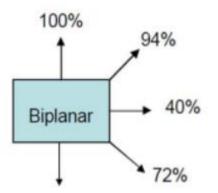
Variations of the composites

Geonet Cores

Geonets come in 3 general shapes.

Bi-planar Tri-planar


Box Form



Geonets have the ability for directional flow and high compressive strength ranging from 450-2250kPa.

However need to consider geotextile intrusion

Cuspate or Sheet Drain

Generally made from HDPE Is made through extrusion process to a range of thickness These studs range from 4mm-25mm Also comes single or double

sided.

Can have high multi directional transmissivity values, but lower compressive strength ~ <750kPa

Monofilament mats

Can be made from a range of polymers.

Have very high flow rates. Wider rolls for ease of installation.

However flow has a rapid decrease over >20kPa loading

Tubular Drain

Pipes are made from PP

Come in range of sizes Can be spaced depending on the transmissivity requirements. Connection details for controlled flow

Very high compressive strength > 2000kPa (once confined)

However flow in 1 direction

Global Synthetics

Different Filters

Filters can be woven or nonwoven geotextiles made from PP or PET polymers

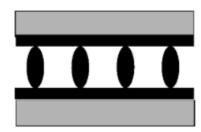
They are either bonded by Thermal or Adhesive

However Thermal alter mechanical values

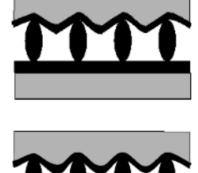
Adhesive alter Hydraulic values

Other considerations for the filter/separator are: Protection requirements Elongation UV resistance Chemical Attack Virgin vs recycled Clogging Permeability

Delamination with structure


Composite Consideration

Boundary Conditions affecting transmissivity

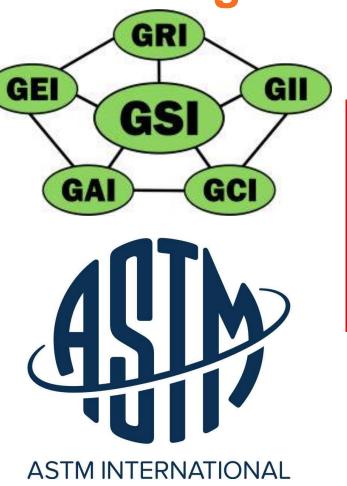

Once selected installation needs consideration.

Tri-planer Geonets and Draintube have flow in certain directions. Geotextile should also have excess material on the edges for overlapping and bonding

Global Synthetics

Various standards

There are 3 main standards/guides


GRI-GC08 Super Seeded by GRI-GC15

ISO/DTR 18228-4 – with the committee

ASTM D7931-18

Both GRI standards are similar to ASTM

ISO has a new creep consideration

ASTM D7931-18 & D4439-17

ASTM D4439 acknowledged Tubular Drainage composites

Standard Terminology for Geosynthetics¹

multi-linear drainage geocomposite, *n*—a manufactured product composed of a series of parallel single drainage conduits regularly spaced across its width sandwiched between two or more geosynthetics.

ASTM D7931 updated This included in the additional permitters on Flow after Creep Reduction factors.

Other areas include: Polymer Degradation Shear Strength Geoelectric Conductivity Leak detection

Creep Factors Compared

FGI - Blond

Creep Reduction Factors

Term	Description	Indicative range
RF _{in}	Reduction Factor for intrusion of the filter geotextiles into the draining core	1,0 - 2,0
RFcr-q	Reduction Factor for flow rate due to compressive creep of the core	1,0 - 6,0
RF _{cc}	Reduction Factor for pore/volume reduction due to chemical clogging	1,0 - 1,5
RF _{bc}	Reduction Factor for pore/volume reduction due to biological clogging (not including applications in landfills)	1,0 - 1,3
RFL	Reduction Factor for overall uncertainties on laboratory data and field conditions	1,0 - 1,5
L	laboratory data and field conditions	

FGI - Blond

Clogging Reduction Factors

Application	Chemical Clogging	Biological Clogging
	(RF _{CC})	(RF_{BC})
Sport fields	1.0 to 1.2	1.1 to 1.3
Capillary breaks	1.0 to 1.2	1.1 to 1.3
Roof and plaza decks	1.0 to 1.2	1.1 to 1.3
Retaining walls, seeping rock and soil slopes	1.1 to 1.5	1.0 to 1.2
Drainage blankets	1.0 to 1.2	1.0 to 1.2
Landfill caps	1.0 to 1.2	1.2 to 3.5
Landfill leak detection	1.1 to 1.5	1.1 to 1.3
Landfill leachate collection	1.5 to 2.0	1.1 to 1.3

Specification Examples

Specification Example

Geocomposite	Ply adhesion Transmissivity	ASTM D7005 ASTM D4716
Geotextile (Before Lamination)	Mass per unit area Grab Tensile Strength Grab Elongation Trapezoidal Tear CBR Burst Strength Permittivity	AS 3706 AS 3706.2b AS 3706.2b AS 3706.3 AS 3706.4 AS 3706.9
Geonet Core (Before Lamination)	Pore Size UV Stability Carbon Black content Compressive Strength Thickness @ 200kPa Peak Tensile Strength	ASTM D6767 ASTM D4355 ASTM D4218 ASTM D1621 ASTM D5199 ASTM D7179

Standards

Geocomposite

Geotextile (Before Lamination)

Geonet Core (Before Lamination)

Ply adhesion Transmissivity	ASTM D7005 ASTM D4716
Mass per unit area	AS 3706
Grab Tensile Strength	AS 3706.2b
Grab Elongation	AS 3706.2b
Trapezoidal Tear	AS 3706.3
CBR Burst Strength	AS 3706.4
Permittivity	AS 3706.9
Pore Size	ASTM D6767
UV Stability	ASTM D4355
Carbon Black content	ASTM D4218
Compressive Strength	ASTM D1621
Thickness @ 200kPa	ASTM D5199
Peak Tensile Strength	ASTM D7179

Challenge of composites

Here is the catch.

As mentioned earlier composites are either bonded through thermal or adhesive This means that your CQA testing can only test the overall composite, i.e. Transmissivity and Ply Adhesion

MQA CQA Difference

Geocomposite	Ply adhesion Transmissivity	ASTM D7005 ASTM D4716 CQA Only
Geotextile (Before Lamination)	Mass per unit area Grab Tensile Strength Grab Elongation Trapezoidal Tear CBR Burst Strength Permittivity Pore Size UV Stability	AS 3706 AS 3706.2b AS 3706.2b AS 3706.3 AS 3706.4 AS 3706.9 ASTM D6767 ASTM D4355
Geonet Core (Before Lamination)	Carbon Black content Compressive Strength Thickness @ 200kPa Peak Tensile Strength	ASTM D4218 ASTM D1621 ASTM D5199 ASTM D7179

What are the options

Reduction factors within the specification

Independent MQA inspections

Shear Box Testing

Perhaps standardization of specification within landfill

Summary

Think about the compressive strength required. Transmissivity required Potential Directional Control Discharging options

Bonding process of the composites Ingress of the filter into the core Clogging of the filter θ_a UV resistance of the filter Permeability Different Polymers and Chemical resistance FINALLY

Should Manufactures demonstration Reduction Factors

$$\theta_{allow} = \frac{\theta_{100}}{RF_{CR} \cdot RF_{CC} \cdot RF_{BC} \cdot RF_{GI} \cdot RF_{L}}$$